The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2X 4X 1 1 1 1 X 1 1 1 1 1 1 1 1 1 3X 1 1 1 1 1 1 0 1 1 1 1 X 1 4X 1 1 1 1 1 X 1 4X 1 1 3X 1 3X 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 3X+4 4X+1 2X+4 2 1 1 2X+3 3 2X+2 4 1 X+2 X+1 3 X+4 0 X+3 2 2X+1 4X+2 1 4X X+2 2X+4 3X+4 2X+2 3X+1 1 X 4X 4X+1 2X+3 1 3X+3 1 3X X+4 4X+4 3X+2 4X+2 1 3X+3 X 2X+2 3X+1 1 3X 1 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X+2 X 3X 2X+2 3X+2 1 0 4X+3 X+1 3X+4 4X+3 4X 4X+1 2X+1 4X+1 X+3 3X+2 2X+3 4X+2 2X 4 3X 2X+3 4X+3 2 X+4 2X+3 3X+2 X+2 X+1 4X+1 4 4 0 2X+3 3X+3 X 4X+4 X+1 3X+2 4X X+3 1 X+3 X 2X+1 2X+4 3 generates a code of length 59 over Z5[X]/(X^2) who´s minimum homogenous weight is 226. Homogenous weight enumerator: w(x)=1x^0+660x^226+980x^227+1060x^228+760x^229+24x^230+740x^231+1200x^232+1060x^233+1200x^234+32x^235+740x^236+1300x^237+800x^238+420x^239+40x^240+660x^241+880x^242+580x^243+320x^244+28x^245+700x^246+640x^247+500x^248+300x^249 The gray image is a linear code over GF(5) with n=295, k=6 and d=226. This code was found by Heurico 1.16 in 47.6 seconds.